Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35.907
1.
Mikrochim Acta ; 191(5): 231, 2024 04 03.
Article En | MEDLINE | ID: mdl-38565795

Blood stasis syndrome (BSS) has persistent health risks; however, its pathogenesis remains elusive. This obscurity may result in missed opportunities for early intervention, increased susceptibility to chronic diseases, and reduced accuracy and efficacy of treatments. Metabolomics, employing the matrix-assisted laser desorption/ionization (MALDI) strategy, presents distinct advantages in biomarker discovery and unraveling molecular mechanisms. Nonetheless, the challenge is to develop efficient matrices for high-sensitivity and high-throughput analysis of diverse potential biomarkers in complex biosamples. This work utilized nitrogen-doped porous transition metal carbides and nitrides (NP-MXene) as a MALDI matrix to delve into the molecular mechanisms underlying BSS pathogenesis. Structural optimization yielded heightened peak sensitivity (by 1.49-fold) and increased peak numbers (by 1.16-fold) in clinical biosamples. Validation with animal models and clinical serum biosamples revealed significant differences in metabolic fingerprints between BSS and control groups, achieving an overall diagnostic efficacy of 0.905 (95% CI, 0.76-0.979). Prostaglandin F2α was identified as a potential biomarker (diagnostics efficiency of 0.711, specificity = 0.7, sensitivity = 0.6), and pathway enrichment analysis disclosed disruptions in arachidonic acid metabolism in BSS. This innovative approach not only advances comprehension of BSS pathogenesis, but also provides valuable insights for personalized treatment and diagnostic precision.


Drugs, Chinese Herbal , Animals , Dinoprost , Feedback , Nitrogen , Porosity , Organic Chemicals , Biomarkers
2.
J Chromatogr A ; 1721: 464848, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38569299

The largest peak capacity (n) that LC analysis can generate in isocratic or gradient elution analysis of a given sample in a given time at a given pressure is proportional to the quality factor (qmax) of its column structure. In this study, the multi-channel structures with open pseudo-planar channels (OPPC) and open circular channels (OCC) where compared with PC2 - a typical core-shell column packed with 2 µm particles. These columns have qmax of 1.27, 1.17 and 0.41, respectively. The former two qmax are the highest among all known column structures - about 3 times higher than qmax of PC2. This means that the OPPC and OCC can generate about 3 times higher n compared to what a PC2 can in the same analysis time (tanal) at the same pressure, or they require about 81 times shorter tanal (81 is the 4th power of 3) to generate the same n as a PC2 can at the same pressure. However, while PC2 is a commercially available column, there are substantial challenges in manufacturing the OPPC and OCC that can compete with PC2 in practical applications. In order to be competitive with PC2, the OPPC and OCC should have sub-1µm characteristic dimensions (e.g., the inter-pillar distance, g, in OPPC-based pillar array columns, internal diameters of OCC). Thus, in order to compete with PC2 in one scenario, an OPPC requires g ≤ 0.14 µm. Additionally, to be competitive with PC2, OPPC and OCC should be able to sustain the same high pressure. Highlighting the challenges of their design and manufacturing might help to develop the manufacturable columns substantially superior to the packed ones.


Particle Size , Chromatography, High Pressure Liquid/methods , Porosity
3.
Biofabrication ; 16(3)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38569492

Tissue engineering has emerged as an advanced strategy to regenerate various tissues using different raw materials, and thus it is desired to develop more approaches to fabricate tissue engineering scaffolds to fit specific yet very useful raw materials such as biodegradable aliphatic polyester like poly (lactide-co-glycolide) (PLGA). Herein, a technique of 'wet 3D printing' was developed based on a pneumatic extrusion three-dimensional (3D) printer after we introduced a solidification bath into a 3D printing system to fabricate porous scaffolds. The room-temperature deposition modeling of polymeric solutions enabled by our wet 3D printing method is particularly meaningful for aliphatic polyester, which otherwise degrades at high temperature in classic fuse deposition modeling. As demonstration, we fabricated a bilayered porous scaffold consisted of PLGA and its mixture with hydroxyapatite for regeneration of articular cartilage and subchondral bone. Long-termin vitroandin vivodegradation tests of the scaffolds were carried out up to 36 weeks, which support the three-stage degradation process of the polyester porous scaffold and suggest faster degradationin vivothanin vitro. Animal experiments in a rabbit model of articular cartilage injury were conducted. The efficacy of the scaffolds in cartilage regeneration was verified through histological analysis, micro-computed tomography (CT) and biomechanical tests, and the influence of scaffold structures (bilayerversussingle layer) onin vivotissue regeneration was examined. This study has illustrated that the wet 3D printing is an alternative approach to biofabricate tissue engineering porous scaffolds based on biodegradable polymers.


Cartilage, Articular , Animals , Rabbits , Porosity , X-Ray Microtomography , Temperature , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Polymers , Polyesters , Printing, Three-Dimensional
4.
J Chromatogr A ; 1721: 464854, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38579528

Developing adsorbents with high performance and long service life for effective extracting the trace organochlorine pesticides (OCPs) from real water is attracting numerous attentions. Herein, a self-standing covalent organic framework (COF-TpPa) membrane with fiber morphology was successfully synthesized by using electrospun nanofiber membranes as template and employed as solid-phase microextraction (SPME) coating for ultra-high sensitivity extraction and analysis of trace OCPs in water. The as-synthesized COF-TpPa membrane exhibited a high specific surface area (800.83 m2 g-1), stable nanofibrous structure, and excellent chemical and thermal stability. Based on the COF-TpPa membrane, a new SPME analytical method in conjunction with gas chromatography-mass spectrometry (GC-MS) was established. This proposed method possessed favorable linearity in concentration of 0.05-2000 ng L-1, high sensitivity with enrichment factors ranging from 2175 to 5846, low limits of detection (0.001-0.150 ng L-1), satisfactory precision (RSD < 10 %), and excellent repeatability (>150 cycles), which was better than most of the reported works. Additionally, the density functional theory (DFT) calculations and XPS results demonstrated that the outstanding enrichment performance of the COF-TpPa membrane was owing to synergistic effect of π-π stacking effects, high specific surface area and hydrogen bonding. This work will expect to extend the applications of COF membrane to captures trace organic pollutants in complex environmental water, as well as offer a multiscale interpretation for the design of effective adsorbents.


Hydrocarbons, Chlorinated , Metal-Organic Frameworks , Nanofibers , Pesticides , Water Pollutants, Chemical , Water , Porosity , Water Pollutants, Chemical/analysis , Solid Phase Microextraction/methods , Pesticides/analysis , Hydrocarbons, Chlorinated/analysis
5.
J Colloid Interface Sci ; 665: 1065-1078, 2024 Jul.
Article En | MEDLINE | ID: mdl-38579389

Reactive oxygen species (ROS)-centered chemodynamic therapy (CDT) holds significant potential for tumor-specific treatment. However, insufficient endogenous H2O2 and extra glutathione within tumor microenvironment (TME) severely deteriorate the CDT's effectiveness. Herein, rich-Zn-Co3O4/N-doped porous carbon (Zn-Co3O4/NC) was fabricated by two-step pyrolysis, and applied to build high-efficiency nano-platform for synergistic cancer therapy upon combination with glucose oxidase (GOx), labeled Zn-Co3O4/NC-GOx for clarity. Specifically, the multiple enzyme-like activities of the Zn-Co3O4/NC were scrutinously investigated, including peroxidase-like activity to convert H2O2 to O2∙-, catalase-like activity to decompose H2O2 into O2, and oxidase-like activity to transform O2 to O2∙-, which achieved the CDT through the catalytic cascade reaction. Simultaneously, GOx reacted with intracellular glucose to produce gluconic acid and H2O2, realizing starvation therapy. In the acidic TME, the Zn-Co3O4/NC-GOx rapidly caused intracellular Zn2+ pool overload and disrupted cellular homeostasis for ion-intervention therapy. Additionally, the Zn-Co3O4/NC exhibited glutathione peroxidase-like activity, which consumed glutathione in tumor cells and reduced the ROS consumption for ferroptosis. The tumor treatments offer some constructive insights into the nanozyme-mediated catalytic medicine, coupled by avoiding the TME limitations.


Cobalt , Hydrogen Peroxide , Neoplasms , Oxides , Humans , Porosity , Reactive Oxygen Species , Glucose Oxidase , Imidazoles , Carbon , Glutathione , Zinc , Neoplasms/drug therapy , Cell Line, Tumor , Tumor Microenvironment
6.
Mikrochim Acta ; 191(5): 262, 2024 04 13.
Article En | MEDLINE | ID: mdl-38613581

Rapid and sensitive detection of carcinoembryonic antigen (CEA) is of great significance for cancer patients. Here, molybdenum (Mo) was doped into bismuth oxide (Bi2O3) by one-pot hydrothermal method forming porous tremella Bi2MoO6 nanocomposites with a larger specific surface area than the spherical structure. Then, a new kind of hydrangea-like TiO2/Bi2MoO6 porous nanoflowers (NFs) was prepared by doping titanium into Bi2MoO6, where titanium dioxide (TiO2) grew in situ on the surface of Bi2MoO6 nanoparticles (NPs). The hydrangea-like structure provides larger specific surface area, higher electron transfer ability and biocompatibility as well as more active sites conducive to the attachment of anti-carcinoembryonic antigen (anti-CEA) to TiO2/Bi2MoO6 NFs. A novel label-free electrochemical immunosensor was then constructed for the quantitative detection of CEA using TiO2/Bi2MoO6 NFs as sensing platform, showing a good linear relationship with CEA in the concentration range 1.0 pg/mL ~ 1.0 mg/mL and a detection limit of 0.125 pg/mL (S/N = 3). The results achieved with the designed immunosensor are comparable with many existing immunosensors used for the detection of CEA in real samples.


Biosensing Techniques , Bismuth , Hydrangea , Molybdenum , Humans , Biomarkers, Tumor , Carcinoembryonic Antigen , Porosity , Immunoassay
7.
PLoS One ; 19(4): e0297677, 2024.
Article En | MEDLINE | ID: mdl-38635561

A nitrogen-phosphorus dual-doped porous spore carbon (NP-PSC) positive electrode matrix was prepared using native auricularia auricula as solid medium based on the principle of biomass rot. Yeast was introduce and cultured by the auricularia auricula solid medium. The freeze-drying and carbonization activation processes made the materials present a three-dimensional porous spore carbon aerogel properties. Yeast fermentation transformed auricularia auricula from blocky structure to porous structure and introduced nitrogen-phosphorus dual-doping. The physical and chemical properties of the prepared materials were characterized in detail. Electrochemical performance of NP-PSC in Li-S batteries was systematically investigated. Porous structure and heteroatom-doping improved the electrochemical performance, which is much superior to conventional activated carbon materials.


Auricularia , Lithium , Saccharomyces cerevisiae , Porosity , Ions , Nitrogen , Phosphorus
8.
Medicine (Baltimore) ; 103(14): e37697, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38579049

BACKGROUND: Total knee arthroplasty involves the use of cemented tibial components for fixation. In recent years, cementless porous tantalum tibial components have been increasingly utilized. The aim of this meta-analysis was to compare the efficacy of cementless porous tantalum tibial components with traditional cemented tibial components in terms of postoperative outcomes following total knee arthroplasty. METHODS: Relevant literature was retrieved from Cochrane Library, PubMed, Embase, and Web of Science using the search terms "(trabecular metal OR Porous tantalum)" AND "knee" up to July 2023. The weighted mean difference with a 95% confidence interval was used as the effect size measure to evaluate the functional recovery of the knee joint, radiological analysis, complications, and implant revisions between cementless porous tantalum tibial components and traditional cemented tibial components after total knee arthroplasty. Review Manager 5.3 was utilized to conduct a comparative analysis of all included studies. RESULTS: Nine studies with a total of 1117 patients were included in this meta-analysis, consisting of 447 patients in the porous tantalum group and 670 patients in the cemented group. Radiological analysis demonstrated that the porous tantalum group had better outcomes than the cemented group (P < .05). The combined results for the 5-year and 10-year follow-ups, range of motion, Western Ontario and McMaster University Osteoarthritis Index, complications, and implant revisions showed no significant differences between the porous tantalum and cemented groups. CONCLUSION: The results of the 5-year and 10-year follow-ups indicate that the use of cementless porous tantalum tibial components is comparable to traditional cemented tibial components, with no significant advantages observed. However, at the 5-year follow-up, the porous tantalum group demonstrated a good bone density in the proximal tibia. Future studies with a larger sample size, long-term clinical follow-up, and radiological results are needed to verify the differences between the 2 implants.


Arthroplasty, Replacement, Knee , Knee Prosthesis , Osteoarthritis, Knee , Humans , Arthroplasty, Replacement, Knee/methods , Tantalum , Tibia/surgery , Porosity , Treatment Outcome , Knee Joint/surgery , Prosthesis Design , Bone Cements , Osteoarthritis, Knee/surgery
9.
J Colloid Interface Sci ; 666: 512-528, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38613974

Metronidazole (MNZ), a commonly used antibiotic, poses risks to water bodies and human health due to its potential carcinogenic, mutagenic, and genotoxic effects. In this study, mesoporous cobalt-manganese layered double hydroxides (CoxMny-LDH) with abundant oxygen vacancies (Ov) were successfully synthesized using the co-precipitation method and used to activate calcium sulfite (CaSO3) with slight soluble in water for MNZ degradation. The characterization results revealed that Co2Mn-LDH had higher specific areas and exhibited good crystallinity. Co2Mn-LDH/CaSO3 exhibited the best catalytic performance under optimal conditions, achieving a remarkable MNZ degradation efficiency of up to 98.1 % in only 8 min. Quenching experiments and electron paramagnetic resonance (EPR) tests showed that SO4•- and 1O2 played pivotal roles in the MNZ degradation process by activated CaSO3, while the redox cycles of Co2+/Co3+ and Mn3+/Mn4+ on the catalyst surface accelerated electron transfer, promoting radical generation. Three MNZ degradation routes were put forward based on the density functional theory (DFT) and liquid chromatography-mass spectrometer (LC-MS) analysis. Meanwhile, the toxicity analysis result demonstrated that the toxicity of intermediates post-catalytic reaction was decreased. Furthermore, the Co2Mn-LDH/CaSO3 system displayed excellent stability, reusability, and anti-interference capability, and achieved a comparably high removal efficiency across various organic pollutant water bodies. This study provides valuable insights into the development and optimization of effective heterogeneous catalysts for treating antibiotic-contaminated wastewater.


Cobalt , Hydroxides , Manganese , Metronidazole , Cobalt/chemistry , Metronidazole/chemistry , Hydroxides/chemistry , Manganese/chemistry , Porosity , Surface Properties , Sulfites/chemistry , Catalysis , Particle Size , Density Functional Theory , Water Pollutants, Chemical/chemistry
10.
J Colloid Interface Sci ; 666: 603-614, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38613982

There has been an increasing demand for simultaneous detection of multiple analytes in one sample. Microbead-based platforms have been developed for multiplexed assays. However, most of the microbeads are made of non-biodegradable synthetic polymers, leading to environmental and human health concerns. In this study, we developed an environmentally friendly dextran microbeads as a new type of multi-analyte assay platform. Biodegradable dextran was utilized as the primary material. Highly uniform magnetic dextran microspheres were successfully synthesized using the Shirasu porous glass (SPG) membrane emulsification technique. To enhance the amount of surface functional groups for ligand conjugation, we coated the dextran microbeads with a layer of dendrimers via a simple electrostatic adsorption process. Subsequently, a unique and efficient click chemistry coupling technique was developed for the fluorescence encoding of the microspheres, enabling multiplexed detection. The dextran microbeads were tested for 3-plex cytokine analysis, and exhibited excellent biocompatibility, stable coding signals, low background noise and high sensitivity.


Dextrans , Microspheres , Dextrans/chemistry , Particle Size , Surface Properties , Humans , Cytokines/analysis , Click Chemistry , Porosity , Mice , Animals , Green Chemistry Technology
11.
Nat Commun ; 15(1): 3131, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605012

Reconciling the dilemma between rapid degradation and overdose toxicity is challenging in biodegradable materials when shifting from bulk to porous materials. Here, we achieve significant bone ingrowth into Zn-based porous scaffolds with 90% porosity via osteoinmunomodulation. At microscale, an alloy incorporating 0.8 wt% Li is employed to create a eutectoid lamellar structure featuring the LiZn4 and Zn phases. This microstructure optimally balances high strength with immunomodulation effects. At mesoscale, surface pattern with nanoscale roughness facilitates filopodia formation and macrophage spreading. At macroscale, the isotropic minimal surface G unit exhibits a proper degradation rate with more uniform feature compared to the anisotropic BCC unit. In vivo, the G scaffold demonstrates a heightened efficiency in promoting macrophage polarization toward an anti-inflammatory phenotype, subsequently leading to significantly elevated osteogenic markers, increased collagen deposition, and enhanced new bone formation. In vitro, transcriptomic analysis reveals the activation of JAK/STAT pathways in macrophages via up regulating the expression of Il-4, Il-10, subsequently promoting osteogenesis.


Osteogenesis , Tissue Scaffolds , Osteogenesis/physiology , Tissue Scaffolds/chemistry , Porosity , Printing, Three-Dimensional , Zinc/pharmacology
12.
J Mater Chem B ; 12(16): 4029-4038, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38586978

Spatiotemporal controlled drug delivery minimizes side-effects and enables therapies that require specific dosing patterns. Conjugated polymers (CP) can be used for electrically controlled drug delivery; however so far, most demonstrations were limited to molecules up to 500 Da. Larger molecules could be incorporated only during the CP polymerization and thus limited to a single delivery. This work harnesses the record volume changes of a glycolated polythiophene p(g3T2) for controlled drug delivery. p(g3T2) undergoes reversible volumetric changes of up to 300% during electrochemical doping, forming pores in the nm-size range, resulting in a conducting hydrogel. p(g3T2)-coated 3D carbon sponges enable controlled loading and release of molecules spanning molecular weights of 800-6000 Da, from simple dyes up to the hormone insulin. Molecules are loaded as a combination of electrostatic interactions with the charged polymer backbone and physical entrapment in the porous matrix. Smaller molecules leak out of the polymer while larger ones could not be loaded effectively. Finally, this work shows the temporally patterned release of molecules with molecular weight of 1300 Da and multiple reloading and release cycles without affecting the on/off ratio.


Drug Delivery Systems , Hydrogels , Polymers , Hydrogels/chemistry , Polymers/chemistry , Insulin/administration & dosage , Insulin/chemistry , Particle Size , Thiophenes/chemistry , Porosity , Drug Carriers/chemistry , Drug Liberation , Surface Properties
13.
Sci Total Environ ; 927: 172294, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38593882

Biochar colloids entering the soil undergo aging over time and exhibit strong capabilities in adsorbing and transporting pollutants. Therefore, investigating the cotransport of aged biochar colloids and thallium (Tl(I)) in quartz sand media is crucial for understanding Tl(I) migration in underground environments. This study investigated the migration of biochar colloids with two different aging degrees and Tl(I) in quartz sand media at various pH and ionic strengths (ISs). The results revealed that under all ISs and pH, 30%AWB (biochar aged with 30 % (w/w) HNO3) inhibited Tl(I) migration in media. This inhibition primarily arose from the introduction of hydroxyl and carboxyl groups during aging, which significantly enhanced colloid adsorption onto Tl(I). At lower ISs, 30%AWB colloids exhibited greater inhibition of Tl(I) migration due to their increased adsorption capacity. Additionally, aging promoted the migration of biochar colloids in the media. Greater biochar aging notably enhanced this promotion, potentially owing to reduced colloidal particle size and the formation of biochar derivatives. Moreover, 50%AWB (biochar aged with 50 % (w/w) HNO3) inhibited Tl(I) migration under low ISs but had almost no impact under high ISs. Nonetheless, at high pH, 50%AWB colloids facilitated Tl(I) migration. This phenomenon might be attributed to the inhibitory effect of aged biochar colloids on Tl(I) adsorption onto media at a high pH, as well as the stable binding between Tl(I) and aged biochar colloids. This study discusses the cotransport of biochar with various degrees of aging and Tl(I) in media, providing insights into remediating soils contaminated with Tl.


Charcoal , Colloids , Thallium , Charcoal/chemistry , Hydrogen-Ion Concentration , Colloids/chemistry , Osmolar Concentration , Adsorption , Porosity , Models, Chemical
14.
Soft Matter ; 20(16): 3508-3519, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38595302

The decellularized tilapia skin (dTS) has gained significant attention as a promising material for tissue regeneration due to its ability to provide unique structural and functional components that support cell growth, adhesion, and proliferation. However, the clinical application of dTS is limited by its low mechanical strength and rapid biodegradability. Herein, we prepare a novel RGD (arginine-glycine-aspartic acid) functionalized dTS scaffold (dTS/RGD) by using transglutaminase (TGase) crosslinking. The developed dTS/RGD scaffold possesses excellent properties, including a medium porosity of ∼59.2%, a suitable degradation rate of approximately 80% over a period of two weeks, and appropriate mechanical strength with a maximum tensile stress of ∼46.36 MPa which is much higher than that of dTS (∼32.23 MPa). These properties make the dTS/RGD scaffold ideal for promoting cell adhesion and proliferation, thereby accelerating skin wound healing in a full-thickness skin defect model. Such an enzymatic cross-linking strategy provides a favorable microenvironment for wound healing and holds great potential for application in skin regeneration engineering.


Oligopeptides , Regeneration , Skin , Tilapia , Tissue Scaffolds , Transglutaminases , Animals , Tissue Scaffolds/chemistry , Tilapia/metabolism , Transglutaminases/metabolism , Transglutaminases/chemistry , Oligopeptides/chemistry , Oligopeptides/metabolism , Wound Healing , Cell Proliferation , Tissue Engineering , Porosity , Mice , Cell Adhesion , Humans
15.
Anal Chem ; 96(15): 5746-5751, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38556995

Microflow porous graphitized carbon liquid chromatography (PGC-LC) combined with negative mode ionization mass spectrometry (MS) provides high resolution separation and identification of reduced native N-glycan structural isomers. However, insufficient spray quality and low ionization efficiency of N-glycans present challenges for negative mode electrospray. Here, we evaluated the performance of a recently developed multinozzle electrospray source (MnESI) and accompanying M3 emitter for microflow PGC-LC-MS analysis of N-glycans in negative mode. In comparison to a standard electrospray ionization source, the MnESI with an M3 emitter improves signal intensity, identification, quantification, and resolution of structural isomers to accommodate low-input samples.


Carbon , 60705 , Carbon/chemistry , Tandem Mass Spectrometry/methods , Porosity , Polysaccharides/chemistry , Spectrometry, Mass, Electrospray Ionization/methods
16.
J Mater Chem B ; 12(16): 3996-4003, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38563677

Encapsulation of enzymes within porous materials has shown great promise for protecting enzymes from denaturation, increasing their tolerance to harsh environments and promoting their industrialization. However, controlling the conformational freedom of the encapsulated enzymes to enhance their catalytic performance remains a great challenge. To address this issue, herein, following immobilization of GOx and HRP on a thermo-responsive porous poly(styrene-maleic-anhydride-N-isopropylacrylamide) (PSMN) membrane, a GOx-HRP@PSMN@HZIF-8 composite was fabricated by encapsulating GOx-HRP@PSMN in hollow ZIF-8 (HZIF-8) with liposome (L) as the sacrificial template. The improved conformational freedom for enzymes arising from the hollow cavity formed in ZIF-8 through the removal of L enhanced the mass transfer and dramatically promoted the catalytic activity of the composite. Interestingly, at high temperature, the coiled PN moiety in PSMN provided the confinement effect for GOx-HRP, which also significantly boosted the catalytic performance of the composites. Compared to the maximum catalytic reaction rates (Vmax) of GOx-HRP@PSMN@LZIF-8, the free enzyme and GOx-HRP@ZIF-8, the Vmax of the GOx-HRP@PSMN@HZIF-8 composite exhibited an impressive 17.8-fold, 10.8-fold and 6.0-fold enhancement at 37 °C, respectively. The proposed composites successfully demonstrated their potential as catalytic platforms for the colorimetric detection of glucose in a cascade reaction. This study paves a new way for overcoming the current limitations of immobilizing enzymes in porous materials and the use of smart polymers for the potential fabrication of enzyme@polymer@MOF composites with tunable conformational freedom and confinement effect.


Enzymes, Immobilized , Glucose Oxidase , Metal-Organic Frameworks , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Metal-Organic Frameworks/chemistry , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/metabolism , Polymers/chemistry , Surface Properties , Porosity , Particle Size , Catalysis , Biocatalysis , Polystyrenes/chemistry
17.
ACS Appl Mater Interfaces ; 16(15): 18522-18533, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38564436

The creation of large, volumetric tissue-engineered constructs has long been hindered due to the lack of effective vascularization strategies. Recently, 3D printing has emerged as a viable approach to creating vascular structures; however, its application is limited. Here, we present a simple and controllable technique to produce porous, free-standing, perfusable tubular networks from sacrificial templates of polyelectrolyte complex and coatings of salt-containing citrate-based elastomer poly(1,8-octanediol-co-citrate) (POC). As demonstrated, fully perfusable and interconnected POC tubular networks with channel diameters ranging from 100 to 400 µm were created. Incorporating NaCl particulates into the POC coating enabled the formation of micropores (∼19 µm in diameter) in the tubular wall upon particulate leaching to increase the cross-wall fluid transport. Casting and cross-linking gelatin methacrylate (GelMA) suspended with human osteoblasts over the free-standing porous POC tubular networks led to the fabrication of 3D cell-encapsulated constructs. Compared to the constructs without POC tubular networks, those with either solid or porous wall tubular networks exhibited a significant increase in cell viability and proliferation along with healthy cell morphology, particularly those with porous networks. Taken together, the sacrificial template-assisted approach is effective to fabricate tubular networks with controllable channel diameter and patency, which can be easily incorporated into cell-encapsulated hydrogels or used as tissue-engineering scaffolds to improve cell viability.


Hydrogels , Tissue Scaffolds , Humans , Hydrogels/chemistry , Cell Survival , Porosity , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Printing, Three-Dimensional , Gelatin/chemistry
18.
PLoS One ; 19(4): e0300326, 2024.
Article En | MEDLINE | ID: mdl-38626003

This study aimed to reduce the risk of graft occlusion by evaluating the two-phase flow of blood and LDL nanoparticles in coronary artery grafts. The study considered blood as an incompressible Newtonian fluid, with the addition of LDL nanoparticles, and the artery wall as a porous medium. Two scenarios were compared, with constant inlet velocity (CIV) and other with pulsatile inlet velocity (PIV), with LDL nanoparticles experiencing drag, wall-induced lift, and induced Saffman lift forces, or drag force only. The study also evaluated the concentration polarization of LDLs (CP of LDLs) near the walls, by considering the artery wall with and without permeation. To model LDL nanoparticles, the study randomly injected 100, 500, and 1000 nanoparticles in three release states at each time step, using different geometries. Numerical simulations were performed using COMSOL software, and the results were presented as relative collision of nanoparticles to the walls in tables, diagrams, and shear stress contours. The study found that a graft implantation angle of 15° had the most desirable conditions compared to larger angles, in terms of nanoparticle collision with surfaces and occlusion. The nanoparticle release modes behaved similarly in terms of collision with the surfaces. A difference was observed between CIV and PIV. Saffman lift and wall-induced lift forces having no effect, possibly due to the assumption of a porous artery wall and perpendicular outlet flow. In case of permeable artery walls, relative collision of particles with the graft wall was larger, suggesting the effect of CP of LDLs.


Bays , Coronary Vessels , Computer Simulation , Porosity , Models, Cardiovascular , Blood Flow Velocity , Stress, Mechanical
19.
Water Sci Technol ; 89(6): 1526-1538, 2024 Mar.
Article En | MEDLINE | ID: mdl-38557716

Water scarcity is a major global challenge that affects both developed and developing countries, with Indonesia serving as a prime example. Indonesia's archipelagic nature, combined with its dense population, exacerbates the severity of water scarcity. The increased population density in these areas raises the demand for water resources, putting a strain on the available supply. The purpose of this research was to create porous mortar filters (PMFs) with different ratios (1:4, 1:5, and 1:6) by incorporating 10, 15, and 20% adsorbent material by weight of fine aggregate. The research was carried out in three stages: determining PMF properties, preparing synthetic wastewater, and assessing treatment effectiveness. Various PMF compositions consistently achieved notable success, with reductions in total dissolved solids and turbidity exceeding 25 and 75%, respectively. The PMF performed admirably in eliminating bacterial concentrations, achieving a 100% removal rate, and was critical in efficiently reducing metals, with compositions achieving over 80% reduction for manganese (Mn) and 38% reduction for iron (Fe). PMF emerges as a practical solution as a cost-effective and simple water treatment technology, particularly suitable for areas with limited technological infrastructure and resources, providing accessible water treatment for communities facing challenges in this regard.


Water Pollutants, Chemical , Water Purification , Porosity , Wastewater , Iron/chemistry , Manganese
20.
Chemosphere ; 355: 141890, 2024 May.
Article En | MEDLINE | ID: mdl-38575085

The co-transport behavior of environmental pollutants with biochar particles has aroused great interests from researchers due to the concerns about pollutant diffusion and environmental exposure after biochar is applied to soil. In this work, the recovery and co-transport behavior of biochar micron-/nano-particles (BCMP and BCNP) and lead (Pb2+) in saturated porous media were investigated under different ionic strength conditions (IS = 1, 5 and 10 mM) under a direct current electric field. The results showed that the electric field could significantly enhance the mobility of Pb adsorbed biochar particles, particularly BCNP. The recovery of Pb laden biochar particles was improved by 1.8 folds, reaching 78.8% at maximum under favorable condition at +0.5 V cm-1. According to the CDE (Convection-Dispersion-Equation) model and DLVO (Derjaguin-Landau-Verwey-Overbeek) theory analysis, the electric field facilitated the transport of Pb carried biochar mainly by increasing the negative charges on biochar surface and improving the repulsive force between biochar and porous media. High IS was favorable for biochar transport under the electric field, but inhibited desorbing Pb2+ from biochar (18% by maximum at IS = 10 mM). By switching the electric field power, a two-stage strategy was established to maximize the recovery of both biochar particles and Pb, where BCNP and Pb recovery were higher than electric field free case by 90% and 35%, respectively. The findings of this study can help build a biochar recovery approach to prevent potential risks from biochar application in heavy metal contaminated soil remediation.


Environmental Pollutants , Soil Pollutants , Lead , Porosity , Charcoal , Soil , Soil Pollutants/analysis
...